hitekker
3 months ago
Skimming through, this document feels thorough and transparent. Clearly, a hard lesson learned. The footnotes, in particular, caught my eye https://rfd.shared.oxide.computer/rfd/397#_external_referenc...
> Why does this situation suck? It’s clear that many of us haven’t been aware of cancellation safety and it seems likely there are many cancellation issues all over Omicron. It’s awfully stressful to find out while we’re working so hard to ship a product ASAP that we have some unknown number of arbitrarily bad bugs that we cannot easily even find. It’s also frustrating that this feels just like the memory safety issues in C that we adopted Rust to get away from: there’s some dynamic property that the programmer is responsible for guaranteeing, the compiler is unable to provide any help with it, the failure mode for getting it wrong is often undebuggable (by construction, the program has not done something it should have, so it’s not like there’s a log message or residual state you could see in a debugger or console), and the failure mode for getting it wrong can be arbitrarily damaging (crashes, hangs, data corruption, you name it). Add on that this behavior is apparently mostly undocumented outside of one macro in one (popular) crate in the async/await ecosystem and yeah, this is frustrating. This feels antithetical to what many of us understood to be a core principle of Rust, that we avoid such insidious runtime behavior by forcing the programmer to demonstrate at compile-time that the code is well-formed
csande17
3 months ago
In case anyone else was confused: the link/quote in this comment are from the previous "async cancellation issue" write-up, which describes a situation where you "drop" a future: the code in the async function stops running, and all the destructors on its local variables are executed.
The new write-up from OP is that you can "forget" a future (or just hold onto it longer than you meant to), in which case the code in the async function stops running but the destructors are NOT executed.
Both of these behaviors are allowed by Rust's fairly narrow definition of "safety" (which allows memory leaks, deadlocks, infinite loops, and, obviously, logic bugs), but I can see why you'd be disappointed if you bought into the broader philosophy of Rust making it easier to write correct software. Even the Rust team themselves aren't immune -- see the "leakpocalypse" from before 1.0.
zozbot234
3 months ago
> The new write-up from OP is that you can "forget" a future (or just hold onto it longer than you meant to), in which case the code in the async function stops running but the destructors are NOT executed.
If you're relying for global correctness on some future being continuously polled, you should just be spawning async tasks instead. Then the runtime takes care of the polling for you, you can't just neglect it - unless the whole thread is blocked, which really shouldn't happen. "Futures" are intentionally a lower-level abstraction than "async runtime tasks".
formerly_proven
3 months ago
async rust continues to strike me as half-baked and too complex, if you’re developing an application (as opposed to some high performance utility like e.g. a data plane component) just use threads, they’re plenty cheap and not even half as messy.
nialv7
3 months ago
Yeah, Rust mostly just eliminates memory safety and data race problems, which is an enormous improvement compared to what we had previously. Unfortunately right now if you really want to write software that's guaranteed to be correct, there's not alternative to formal verification.
rtpg
3 months ago
I guess one big question here is whether there's a higher layer abstraction that is available to wrap around patterns to avoid this.
It does feel like there's still generally possibilities of deadlocks in Rust concurrency right? I understand the feeling here that it feels like ... uhh... RAII-style _something_ should be preventing this, because it feels like statically we should be able to identify this issue in this simple case.
I still have a hard time understanding how much of this is incidental and how much of this is just downstream of the Rust/Tokio model not having enough to work on here.
user
3 months ago
embedding-shape
3 months ago
> I guess one big question here is whether there's a higher layer abstraction that is available to wrap around patterns to avoid this.
Something like Actors, on top of Tokio, would be one way: https://ryhl.io/blog/actors-with-tokio/
IshKebab
3 months ago
The Fuchsia guys use the trait system to enforce a global mutex locking order, which can statically prevent deadlocks due to two threads locking mutexes that they are both waiting for.
Doesn't help in this case, but it does suggest that we might be able to do better.
gf000
3 months ago
> It does feel like there's still generally possibilities of deadlocks in Rust concurrency right?
I mean, is there any generic computation model where you can't have deadlocks? Even with stuff like actors you can trivially have cycles and now your blocking primitive is just different (not CPU-level), and we call it a livelock, but it's fundamentally the same.