I don't think cold climates will be that different here. grid scale storage doesn't care about outside temp because heating/cooling a warehouse is pretty cheap
A lot of BESS enclosures (sub grid scale, and grid scale) are much more primitive than a warehouse. If you don’t need to pay for HVAC, it’s free money for the operator.
To add some meat to that correct statement:
CATL is launching volume production of their second generation sodium ion battery in December 2025. That's in about 2 months. I'm sure they'll use most of next year to ramp up production but they are targeting multiple gwh of production capacity with this first factory. More will likely follow. Apparently converting existing LFP production to this is relatively easy. This is not some experimental thing but a completely validated and ready for mass production chemistry.
Some basic stats of their cell: 175 wh/kg, ~10K charge cycles, -40 to +70 degrees celsius operating range, 5C charge rate (very fast basically). That's basically very competitive with LFP for both storage and low end EVs (up to 500km/300miles is a number they've cited).
That is all straight from CATL's recent press release on this. They are either playing some really amazing poker game here or they really are about to massively change things in the market.
That temperature range means these batteries can operate pretty much anywhere on this planet.
Peak Energy is actually starting to produce low volume production for their unique chemistry for grid storage. Their pitch is basically that they can deploy these in the desert with passive cooling only. No fans or moving parts. No cooling liquids. Nothing. Apparently this should work fine in a desert where it's freezing cold at night and blisteringly hot during the day. No fire risk. No mechanical parts that can break. Basically plonk them down and forget about them. Of course highly uncertain if they can scale all the way but it sounds promising.
There are other companies with production plans (or actual production happening) on this front as well.
Sodium ion has definitely left the labs now and it's now a matter of time before either these batteries are mass produced and widely used or something even better comes along to displace this. My guess is sodium ion will eat significantly into LFP market share for both storage and automotive in the next five years or so. After that, I would be very disappointed if nothing better comes along. Five years is about the same time it took for LFP to make a big dent into NMC market share. It might be some time before these things start showing up in the US though because of the tariff situation and the lack of local production capacity for this new chemistry. But if it is successful elsewhere, it will eventually happen there as well.
The biggest feature of this chemistry is actually the low cost of the materials. There are no exotic metals that you need. Everything needed can be sourced cheaply and locally in abbundance in pretty much every country. There have been some persistent rumors that CATL is targeting a long term cost of this chemistry of around 10$/kwh starting at maybe between 30 and 50$. 10$ is almost 10x lower than what is common today. Most EVs only have about 500-700$ worth of battery at those prices. As opposed to 5-7K right now. And many manufacturers don't produce their own cells so they would be paying more.
The cost is basically why people are a bit bullish on this technology. The low cost is a really big deal. It changes everything.
Thanks for this. 10$/kWh would be insane as an aspirational number but are these manufacturer costs or grid scale buyer costs or retail costs for end user in EVs/homes? To make it more specific, what % drop in per-kwh costs for grid scale storage should energy developers expect to see over the next 2-3 years due to sodium ion? Trying to nail down a best-guess percentage drop to get a feel for how big this is going to be.
What makes sodium-ion batteries so much cheaper than LFP batteries?
Isn’t lithium only about 15% of the cost of an LFP cell to begin with?
IMO, for large scale, nothing beats pumped water storage if you have the right conditions for the required lake. No risk of a bad cell causing a fire, no chemical degradation, no cooling or heating required and zero to full power within seconds just like a battery.
I should have been more clear. I'm saying sodium ion will be chosen when litium ion otherwise would have. We have a large battery at Moss Landing CA where I live. When those batteries need replacing, I'd bet they'll use sodium ion.
One of the few pumped hydro facilities in the US had a catastrophic flood
Sure. But batteries are needed for "more" and "location".
If a sodium battery is heavy and bigger but used for gridscale then that'll work fine.