martinald
8 hours ago
This really is a function of two things:
1) (Mainly) the huge increase in upstream capacity of residential broadband connections with FTTH. It's not uncommon for homes to have 2gbit/sec up now and certainly 1gbit/sec is fairly commonplace, which is an enormous amount of bandwidth compared to many interconnects. 10, 40 and 100gbit/sec are the most common and a handful of users can totally saturate these.
2) Many more powerful IoT devices that can handle this level of attack outbound. A $1 SoC can easily handle this these days.
3) Less importantly, CGNAT is a growing problem. If you have 10k (say) users on CGNAT that are compromised, it's likely that there's at least 1 on each CGNAT IP. This means you can't just null route compromised IPs as you are effectively null routing the entire ISP.
I think we probably need more government regulation of these IoT devices. For example, having a "hardware" limit of (say) 10mbit/sec or less for all networking unless otherwise required. 99% all of them don't need more than this.
toast0
7 hours ago
> 3) Less importantly, CGNAT is a growing problem. If you have 10k (say) users on CGNAT that are compromised, it's likely that there's at least 1 on each CGNAT IP. This means you can't just null route compromised IPs as you are effectively null routing the entire ISP.
Null routing is usually applied to the targets of the attack, not the sources. If one of your IPs is getting attacked, you null route it, so upstream routers drop traffic instead of sending it to you.
martinald
7 hours ago
Sorry, late here. You are right. I mean filter the IP in question.
bsder
7 hours ago
> If you have 10k (say) users on CGNAT that are compromised, it's likely that there's at least 1 on each CGNAT IP. This means you can't just null route compromised IPs as you are effectively null routing the entire ISP.
How about we actually finally roll out IPv6 and bury CGNAT in the graveyard where it belongs?
Suddenly, everybody (ISPs, carriers, end users) can blackhole a compromised IP and/or IP range without affecting non-compromised endpoints.
And DDoS goes poof. And, as a bonus, we get the end to end nature of the internet back again.
lgeek
6 hours ago
From having worked on DDoS mitigation, there's pretty much no difference between CGNAT and IPv6. Block or rate limit an IPv4 address and you might block some legitimate traffic if it's a NAT address. Block a single IPv6 address... And you might discover that the user controls an entire /64 or whatever prefix. So if you're in a situation where you can't filter out attack trafic by stateless signature (which is pretty bad already), you'll probably err on the side of blocking larger prefixes anyway, which potentially affect other users, the same as with CGNAT.
Insofar as it makes a difference for DDoS mitigation, the scarcity of IPv4 is more of a feature than a bug.
zamadatix
5 hours ago
(Having also worked on DDoS mitigation services) That "entire /64" is already hell of a lot more granular than a single CG-NAT range serving everyone on an ISP though. Most often in these types of attacks it's a single subnet of a single home connection. You'll need to block more total prefixes, sure, but only because you actually know you're only blocking actively attacking source subnets, not entire ISPs. You'll probably still want something signature based for the detection of what to blackhole though, but it does scale farther in a combo on the same amount of DDoS mitigation hardware.
spongebobstoes
6 hours ago
you can heuristically block ipv6 prefixes on a big enough attack by blocking a prefix once a probabilistic % of nodes under it are themselves blocked, I think it should work fairly well, as long as attacking traffic has a signature.
consider simple counters "ips with non-malicious traffic" and "ips with malicious traffic" to probabilistically identify the cost/benefit of blocking a prefix.
you do need to be able to support huge block lists, but there isn't the same issue as cgnat where many non-malicious users are definitely getting blocked.
swinglock
an hour ago
You should block the whole /64, at least. It's often a single host. It's often but not always a single host, that's standardized.
vladvasiliu
an hour ago
Usually a /64 is a "local network", so in the case of consumer ISPs that's all the devices belonging to a given client, not a single device.
Some ISPs provide multiple /64s, but in the default configuration the router only announces the first /64 to the local network.
TZubiri
an hour ago
Presumably a compromised device can request arbitrarily new ipv6 from the dhcp so the entire block would be compromised. It would be interesting to see if standard dhcp could limit auto leasing to guard reputation of the network
bsder
2 hours ago
This DDoS is claimed to be the result of <300,000 compromised routers.
That would be really easy to block if we were on IPv6. And it would be pretty easy to propagate upstream. And you could probabilistically unblock in an automated way and see if a node was still compromised. etc.
TZubiri
an hour ago
Better to rely on ip blocks than on NAT to bundle blocks.
ralnivar
6 hours ago
I am a bit split this topic. There is some privacy concerns with using ipv6. https://www.rfc-editor.org/rfc/rfc7721.html#page-6
Some time ago I decided for our site to not roll out ipv6 due to these concerns. (a couple of million visitors per month) We have meta ads reps constantly encourage us to enable it which also do not sit right with me.
Although I belive fingerprinting is sofisticated enough to work without using ip's so the impact of using ipv6 might not be a meaningful difference.
GoblinSlayer
an hour ago
Reportedly this is often incorrectly implemented, where /64 prefix is still a stable static address.
miyuru
2 hours ago
its hilarious that you have privacy concerns while at the same time using meta ads.
nine_k
6 hours ago
Is there any money an ISP would make, or save, by sinking money and effort on switching to IPv6? If there's none, why would they act? If there is some, where?
For instance, mobile phone operators, which had to turn ISPs a decade or two ago, had a natural incentive to switch to IPv6, especially as they grew. Would old ISPs make enough from selling some of their IPv4 pools?
ROBLOX_MOMENTS
6 hours ago
They already lease them out. TELUS in Canada traditional old ISP rents large portion of their space to a mostly used for Chinese GFW VPN server provider in LA „Psychz“
TZubiri
an hour ago
The ISPs have to submit plans on how to use their IPs for the public,especially for IPv4, Arnic shouldn't approve this kind of stuff. Unless they lied in their ip block application, in which case they should be revoked their block.
rendaw
5 hours ago
Presumably they'd lose money when a DDoS originating from their network causes all their ips to get blocked.
beeflet
6 hours ago
less expensive IP space, more efficient hardware, and lower complexity if you can eliminate NAT.
rectang
6 hours ago
Is it advantageous to be someone who supports IPv6 on a day like today?
idiotsecant
6 hours ago
Haha that last part is pretty wild. rather than worrying about systemic problems in the entire internet let's just make mandates crippling devices that China, where all these devices are made, will defffinitely 100% listen to. Sure, seems reasonable. Systems that rely on the goodwill of the entire world to function are generally pretty robust, after all.
saagarjha
5 hours ago
If they don’t then the devices are not sold in the United States. It’s quite simple.
gjsman-1000
7 hours ago
> I think we probably need more government regulation of these IoT devices. For example, having a "hardware" limit of (say) 10mbit/sec or less for all networking unless otherwise required. 99% all of them don't need more than this.
What about DDoSs that come from sideloaded, unofficial, buggy, or poorly written apps? That's what IoT manufacturers will point to, and where most attacks historically come from. They'll point to whether your Mac really needs more than 100mbps.
The government is far more likely to figure it out along EU lines: Signed firmware, occasional reboots, no default passwords, mandatory security updates for a long-term period, all other applicable "common sense" security measures. Signed firmware and the sideloading ID requirements on Android also helps to prevent stalkerware, which is a growing threat far scarier than some occasional sideloaded virus or DDoS attack. Never assume sideloading is consensual.
ShowalkKama
6 hours ago
>What about DDoSs that come from sideloaded, unofficial, buggy, or poorly written apps? That's what IoT manufacturers will point to, and where most attacks historically come from.
any source for this claim? Outside of very specific scenarios which differ significantly for the current botnet market (like manjaro sending too many requests to the aur or an android application embedding an url to a wikipedia image) I cannot remember one occourence of such a bug being versatile enough to create a new whole cybercrime market segment.
>They'll point to whether your Mac really needs more than 100mbps.
it does, because sometimes my computer bursts up to 1gbps for a sustained amount of time, unlike the average iot device that has a predictable communication pattern.
>Signed firmware and the sideloading ID requirements on Android also helps to prevent stalkerware, which is a growing threat far scarier than some occasional sideloaded virus or DDoS attack. Never assume sideloading is consensual.
if someone can unlock your phone, go into the settings, enable installation of apps for an application (ex. a browser), download an apk and install it then they can do quite literally anything, from enabling adb to exfiltrating all your files.
gjsman-1000
6 hours ago
Historically, it was called Windows XP and Vista about 15 years ago (Blaster, Sasser, MyDoom, Stuxnet, Conficker?). Microsoft clamped down, hard, across the board, but everyone outside of Big Tech is still catching up.
Despite Microsoft's efforts, 911 S5 was roughly 19 million Windows PCs in 2024, in news that went mostly under the radar. It spread almost entirely through dangerous "free VPN" apps that people installed all over the place. (Why is sideloading under attack so much lately? 19 million people thought it would make them more secure, and instead it turned their home internet into criminal gateways with police visits. I strongly suspect this incident, and how it spread among well-meaning security-minded people, was the invisible turning point in Big Tech against software freedom lately.)
https://www.fbi.gov/investigate/cyber/how-to-identify-and-re...
> if someone can unlock your phone, go into the settings, enable installation of apps for an application (ex. a browser), download an apk and install it then they can do quite literally anything, from enabling adb to exfiltrating all your files.
Which is more important, and a growing threat? Dump all her photos once; or install a disguised app that pretends to be a boring stock app nobody uses, that provides ongoing access for years, with everything in real-time up to the minute? Increasingly it's the latter. She'll never suspect the "Samsung Battery Optimizer" or even realize it came from an APK. No amount of sandboxing and permissions can detect an app with a deliberately false identity.
devwastaken
6 hours ago
1gb upload is extraordinarily rare.
saagarjha
5 hours ago
It’s not; most places that give you gigabit fiber will give you a symmetric connection.
typpilol
4 hours ago
Yup. Spectrum is Michigan will give you up to 2gbps down but not anything more than 200mbps up
dylan604
4 hours ago
Is Spectrum fiber or DOCSIS? I didn't realize anyone was pushing these kinds of numbers for fiber. What's the point other than screwing the users?
vitaflo
5 hours ago
Most places do not have fiber.
Dylan16807
5 hours ago
We know. The problem is that the above comment said "extraordinarily rare" which is a very different and incorrect threshold.
dylan604
4 hours ago
But for those that do...symmetric is the norm. The number of fiber connections is only going up.
ls612
5 hours ago
This is probably technically true but very misleading. Fiber penetration in the US has been consistently rising for over a decade now and it is not at all uncommon to have either Google Fiber, Fios, or a local fiber provider available to you in a big city. I bet within the next decade most places will have gigabit fiber available.
_carbyau_
3 hours ago
The US is a big place. But the world is bigger. The internet works across the whole world.
There's a long way to go before fibre is commonplace across the world.
nick32661123
7 hours ago
Seems more likely that residential modems will be required to use ISP-provided equipment that has government mandated chips, firmware, etc to filter outbound traffic for DDoS prevention.
DaSHacka
7 hours ago
Why should they be required to have hardware in their own network to filter that out when the ISP is obviously receiving all of their traffic anyway?