drakeballew
9 hours ago
This is a beautiful piece of work. The actual data or outputs seem to be more or less...trash? Maybe too strong a word. But perhaps you are outsourcing too much critical thought to a statistical model. We are all guilty of it. But some of these are egregious, obviously referential LLM dog. The world has more going on than whatever these models seem to believe.
Edit/update: if you are looking for the phantom thread between texts, believe me that an LLM cannot achieve it. I have interrogated the most advanced models for hours, and they cannot do the task to any sort of satisfactory end that a smoked-out half-asleep college freshman could. The models don't have sufficient capacity...yet.
liqilin1567
6 hours ago
When I saw that the trail goes through just one word like "Us/Them", "fictions" I thought it might be more useful if the trail went through concepts.
rtgfhyuj
2 hours ago
give it a more thorough look maybe?
eloisius
2 hours ago
It’s any interesting thread for sure, but while reading through this I couldn’t help but think that the point of these ideas are for a person to read and consider deeply. What is the point of having a machine do this “thinking” for us? The thinking is the point.
what-the-grump
7 hours ago
Build a rag with significant amount of text, extract it by key word topic, place, date, name, etc.
… realize that it’s nonsense and the LLM is not smart enough to figure out much without a reranker and a ton of technology that tells it what to do with the data.
You can run any vector query against a rag and you are guaranteed a response. With chunks that are unrelated any way.
electroglyph
3 hours ago
unrelated in any way? that's not normal. have you tested the model to make sure you have sane output? unless you're using sentence-transformers (which is pretty foolproof) you have to be careful about how you pool the raw output vectors